
Review Article
Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and
Associated Colorectal Cancer

Zhiqi Wang,1 Sai Li,1 Yu Cao,2 Xuefei Tian,1 Rong Zeng,1

Duan-Fang Liao,1 and Deliang Cao1,2

1Department of Pharmacology, Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder
andMedicine Innovation in Hunan (Incubation), and Key Laboratory of Colleges and Universities in Hunan Province for Cytobiology
and Molecular Biotechnology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
2Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute,
Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA

Correspondence should be addressed to Deliang Cao; dcao@siumed.edu

Received 3 June 2015; Revised 14 October 2015; Accepted 25 October 2015

Academic Editor: Lokesh Deb

Copyright © 2016 Zhiqi Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC) and colitis-associated colorectal cancer
(CAC), but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species
(ROS), such as superoxide anion free radical (O

2

∙−), hydrogen peroxide (H
2
O
2
), and hydroxyl radical (HO∙), are produced at high

levels and accumulated to cause oxidative stress (OS). In oxidative status, accumulated ROS can cause protein dysfunction andDNA
damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling
pathways, such as NF-𝜅B and p38MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic
carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and
membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause
DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be
exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This
review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of
UC and CAC.

1. Introduction

Reactive oxygen species (ROS) refer to a class of special
oxygen chemical forms or oxygen-containing compounds
that have much higher chemical activity than the oxygen.
Oxidative stress (OS) occurs if the generation of ROS exceeds
the defensive capability of the antioxidant system in the
cell [1]. As a largest endocrine and immune organ, the
intestinal tract abundant with microorganisms is important
in stress response, such as oxidative stress [2]. Superoxide
anion free radical (O

2

∙−) and nitric oxide free radical (NO∙)
are two main endogenous reactive oxygen/nitrogen species
(ROS/RNS), from which other reactive free radicals, such
as hydrogen peroxide (H

2
O
2
), hydroxyl radical (HO∙), and

peroxynitrite anion (ONOO−), are derived [3]. There are

several sources of ROS in the digestive tract [4]. Luminal
microbes produce a large amount of ROS; inside cells,
superoxide anion, hydrogen peroxide, and hydroxyl radicals
are produced as byproducts of mitochondrial respiration in
aerobic metabolism and in cytochrome P450 detoxifying
reactions; and in the process of chronic inflammation, a large
amount of ROS is produced by neutrophil phagocytosis of
bacteria, granular materials, or soluble irritants [5, 6].

In normal condition, intestinal ROS have bactericidal
effects, participating in the intestinal defensive function.
However, oxidative stress derived from excessive ROS pro-
duction over the buffering capability of antioxidant defense
in the host would cause lipid peroxidation, intestinal mucosal
barrier damage, bacterial translocation, and inflammatory
response [2, 7]. Ulcerative colitis (UC) is a type of chronic
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inflammatory bowel disease (IBD) in which oxidative stress
plays a critical role in its pathogenesis andmalignant progres-
sion to colorectal cancer (CRC) [8, 9]. UC affects the distal
colon and rectum but often extends to the proximal colon
and eventually to the whole colon. Clinically, patients with
UC usually experience an intermittent course for a lifetime
and colectomy is the only curative option [10, 11]. A worse
scenario of UC is the increased risk of developing colorectal
cancer, so-called colitis-associated colorectal cancer (CAC)
[12]. This review article focuses on the oxidative stress and
secondary carbonyl (lipid peroxide) lesions in the pathogen-
esis of UC and CAC.

2. Oxidative Stress and Carbonyl Lesions
in Ulcerative Colitis

UC is essentially an immune-inflammatory disease. Inflam-
mation is a process that consists of a series of protective
responses, such as immune cell infiltration and cytokine
expression, to eliminate pathogens/insults and initiate dam-
age repair of the tissue. Acute inflammation is the immediate
response of the body to pathogens and characterized with
recruitment of leukocytes, particularly granulocytes. Chronic
inflammation is a prolonged inflammatory process and char-
acterized by simultaneous damage and healing of tissues at
the inflammatory spot, resulting in a progressive shift of
cell types. Therefore, chronic inflammation often leads to
progressive diseases in the host [13].

Ulcerative colitis (UC) is a chronic inflammation de-
scribed with remission and reactivation [10]. In active phase,
UC is characterized with diffusive inflammatory cell infil-
tration and small intestinal mucosal crypt abscesses. In
the inflammatory colon, mucosa, submucosa, and lamina
propria are often infiltrated with neutrophils, lymphocytes,
plasma cells, and eosinophils [14]. The infiltrated neutrophils
produce a large amount of ROS, triggering oxidative stress,
and proteolytic enzymes. The proteolytic enzymes and ROS
act on endothelial cells and cause cell injury and subsequent
epithelial barrier permeability and luminal pathogen inva-
sion, which in turn exaggerate inflammatory cell infiltration
and inflammatory damage, eventually leading to intestinal
mucosal necrosis and ulceration [15]. Meanwhile, epithelial
regeneration starts to cover the ulcerative area under stimu-
lation of mitogenic cytokines and prostaglandins produced
in inflammatory response. In this circumstance, intestinal
mucosal hyperemia, edema, and hyperplasia polyps may
appear.

Etiopathology of UC is complicated, including bacterial
or viral infection, changes of colon microbiota, excessive
immune response, and oxidative stress injury [16, 17]. Host
genetic factors also play an etiological role in the devel-
opment and progression of UC. It has been reported that
the chromosomal loci 3, 7, and 12 in humans are associated
with individual sensitivity to inflammatory bowel disease,
including UC [18]. Recent studies from our laboratory have
demonstrated that aldo-keto reductase 1B10 (AKR1B10) is
a potential etiopathogenic factor of UC and CAC [19].
Among these etiopathological factors, the abnormal immune

response is considered a key ofUC.Thenormal colonmucosa
plays an immune, endocrine, and barrier function. Injuries
occurring in the intestinal mucosa insult its barrier function;
increased intestinal mucosal permeability allows microbes
and antigens to invade and excessively stimulate immune
response, triggering intestinal inflammation. Excessive ROS
are produced leading to oxidative stress during the inflam-
matory response, exaggerating inflammatory lesions in the
pathogenesis of UC.

2.1. Redox in the Intestine. In the intestine, main ROS include
hydroxyl free radical (OH∙), superoxide anion radical (O

2

∙−),
and hydrogen peroxide (H

2
O
2
) while superoxide dismu-

tase (SOD), glutathione peroxidase (GSH-PX), and catalase
(CAT) are main antioxidant enzymes [20]. Peroxisomes are
important organelles in biological oxidation in cells and
participate in production and clearance of free radicals.
Peroxisomes are enriched with hydrogen peroxide enzymes,
oxidases, and peroxidases [21, 22]. Oxidases catalyze 𝛽-
oxidation of fatty acids for energetic metabolism, producing
H
2
O
2
. H
2
O
2
is in turn transformed into OH∙ or other active

free radicals [23]. In addition, xanthine oxidase and uric acid
oxidase produce electronics in oxidative metabolic pathways
[24, 25]. Hydrogen peroxide enzyme and SOD reduce H

2
O
2

into H
2
O. In the process of chronic intestinal inflammation,

a large amount of ROS, such as O
2

∙− and H
2
O
2
, is produced

by neutrophils during phagocytosis. This phagocytic process
activates nicotinamide adenine dinucleotide phosphate oxi-
dase (NOX) in the membrane, leading to rapid depletion of
oxygen and production of superoxide anion [5, 6].

Cells evolve an antioxidant defense system to maintain
homeostasis between the oxidant and antioxidant species [26,
27]. Excessive generation of free radicals beyond the capacity
of defense leads to failure of this homeostatic process and
oxidative injuries, such as lipid peroxidation and DNA dam-
age, so-called oxidative stress.The antioxidant defense system
in cells consists of enzymatic and nonenzymatic antioxidant
molecules (Table 1). In addition to the endogenous cellu-
lar antioxidant species, natural food is also an important
resource of antioxidants. For example, quercetin (3,5,7,3,4,
pentahydroxyflavone), a flavonoid present in numerous fruits
and vegetables, demonstrates appreciable antioxidant activity
by eliminating free radicals and quenching singlet oxygen
[28]. Resveratrol, a phenolic substance in red wines, is also
a natural antioxidant and anti-inflammatory molecule [29].

2.2. Oxidative Stress Insults inUlcerative Colitis. While a basal
level of ROS may play a protective role in the intestine,
the oxidative stress derived from imbalance between ROS
production and antioxidant system is harmful, being an
important pathogenic factor of UC. ROS are highly active
chemical forms that target macromolecules, such as proteins,
lipids, and nucleic acids, leading to lipid peroxidation, pro-
tein dysfunction, and DNA mutations (Figure 1). Therefore,
excessive ROS cause cell and tissue damage, exaggerate
inflammation, and lead to far-reaching effects, such as car-
cinogenesis. Herein we will discuss the protein and lipid
damage and cellular effects induced by oxidative stress.Nuclei
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Figure 1: Schematic formulas. Reactive oxygen species and carbonyl compounds are highly reactive, causing protein, lipids, andDNAdamage.

acid damage and carcinogenic effects of oxidative stress will
be addressed in Section 3.

2.2.1. Protein Damage Induced by Oxidative Stress. Oxidative
stress insults proteins. Highly active ROS can readily interact
with protein amino acid residues, such as His, Pro, Trp,
Cys, and Tyr residues, and cause protein structure changes,
polypeptide chain cracking, and loss of the biological activity.

For example, ROS can oxidize sulfhydryl groups (-SH) in
the amino acid residues to form disulfide bonds (-S-S-)
and cross-link (Figure 1). ROS could also attack the methyl-
sulfide group (CH

3
-S-) in methionine (Met) and affect

hydrolysis and carbonylation of proteins [30, 31].

2.2.2. Lipid Peroxidation Triggered by Oxidative Stress. Lipid
peroxidation (LPO) is a serious cellular damage. Reactive
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Table 1: Oxidant species and antioxidant defense.

Oxidant species

Reactive oxygen species (ROS)

Superoxide anion (∙O
2

−)
Peroxide (O

2

−2)
Hydrogen peroxide (H

2
O
2
)

Hydroxyl radical (∙OH)
Hydroxyl ion (OH−)

Reactive nitrogen species
(RNS)

Nitric oxide (∙NO)
Peroxynitrite (ONOO−)
Nitrogen dioxide (∙NO

2
)

Dinitrogen trioxide (N
2
O
3
)

Nitrosoperoxycarbonate (ONOOCO
2

−)

ROS resources

Mitochondrial electron transition
Enzyme reactions: peroxisomal oxidases, cytochrome P-450, NAD(P)H oxidases,
and xanthine oxidase
Xenobiotics, drugs, and radiation: cisplatin, doxorubicin, and so forth.

RNS resources
Nitric oxide (∙NO) from nitric oxide synthase 2 (NOS2)
Other RNS from reaction of nitric oxide (∙NO) with superoxide anion (∙O

2

−) and
other reactive species.

Antioxidant defense

Nonenzymatic antioxidants

Glutathione (GSH)
Cysteine
Metallothionein
Coenzyme Q (CoQ)
Uric acid

Enzymatic antioxidants

Superoxide dismutase (SOD)
Catalase (CAT)
Peroxiredoxin (Prx)
Glutathione reductase (GR)
Glutathione peroxidases (GPx)
Glutathione-S-transferases (GST)
Thioredoxin and thioredoxin reductase

Natural (food) antioxidants
Vitamin A/C/E
Flavonoid
Resveratrol

ROS readily bind to unsaturated fatty acids in lipids that
contain multiple double bonds, “steal” electrons, and trigger
a free radical chain reaction (Figure 1).This oxidative process
usually consists of initiation (production of a fatty acid rad-
ical), propagation (creation of a peroxyl-fatty acid radical),
and termination (production of electrophilic carbonyls) [32].
This lipid peroxidation process produces twomajor biological
effects, that is, direct membrane damage and permeability
and production of lipid peroxides [33]. The common lipid
peroxides created by lipid peroxidation includemalondialde-
hyde (MAD), 4-hydroxynonenal (HNE), crotonaldehyde,
and acrolein [34]. These lipid peroxides are 𝛼,𝛽-unsaturated
and highly reactive to cellular proteins and nucleic acids. In
UC pathogenesis, lipid peroxides are important secondary
injury factors of oxidative stress.

Phospholipids are primary ingredients of cell and
organelle membrane and are enriched with unsaturated fatty
acids. Therefore, the lipid peroxidation induced by oxidative
stress mainly occurs in the membrane, and attacking by
ROS would lead to direct structural and functional changes
of membranes [33]. Mitochondrial membrane is the site
of the respiratory chain that generates ROS in the normal
cells. Therefore, mitochondria are the main organelles that
are produced and attacked by ROS [35]. In the status of
oxidative stress, excessive ROS attack oxidation respiratory
chain and lead to obstacle of oxidative phosphorylation, pro-
ducing more ROS. Excessive ROS also make Ca2+ overload
in the mitochondria and lead to mitochondrial membrane
depolarization and permeability, releasing free radicals into
cytoplasm and causing cellular damage in general. Increased
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membrane permeability also releases cytochrome C (Cyt-
C) and apoptosis inducing factor (AIF) into cytoplasm and
activates caspase cascade for apoptosis [36, 37]. Therefore, in
oxidative status ROS production by respiratory chain, mito-
chondrial membrane insults, and ROS release into cytoplasm
form a vicious cycle, causing cell death and tissue injury.
We will discuss the lesions induced by lipid peroxides in
Section 2.3.

2.2.3. Cell Signaling Triggered by Oxidative Stress. ROS could
function as secondmessengers to activate intracellular signal-
ing pathways, such as NF-𝜅B, a major modulator of UC [38–
42]. In the normal intestinal epithelium, NF-𝜅B maintains
intestinal epithelial barrier function and coordinates epithe-
lial immune response tomicroorganisms. On the other hand,
as transcription factors, deregulation of NF-𝜅B signaling,
such as oxidative activation, stimulates expression of a variety
of proinflammatory cytokines in the intestinal epithelial cells,
such as TNF-𝛼, IL-1, IL-8, and COX-2, and promotes inflam-
mation and carcinogenesis. In static state,NF-𝜅B in the cells is
bound to I𝜅B, inhibitors of 𝜅B, and hooked in the cytoplasm.
Activation of NF-𝜅B consists of I𝜅B kinase (IKK) activation,
I𝜅B phosphorylation and ubiquitinated degradation by 26S
proteasomes, and nuclear translocation and DNA binding
of free NF-𝜅B, finally promoting target gene expression
[43]. Oxidative stress can activate IKK and stimulate nuclear
translocation of NF-𝜅B (Figure 2). In the diseased colon
tissues of UC patients, NF-𝜅B expression, particularly the p65
(Re1A) and p52/p100 (NF-𝜅B2), is increased, and blockade
of NF-𝜅B activity is considered practical treatment of UC
[44]. In addition, the activation of p50, c-Rel, and p65 is
documented in macrophages in the lamina propria of UC
patients [45].

Oxidative stress also activates mitogen-activated protein
(MAP) kinase (MAPK) signaling pathways. MAPKs are
highly conserved serine/threonine protein kinases func-
tioning in various fundamental cellular processes, such as
growth/proliferation, differentiation, motility, and apopto-
sis/survival, as well as stress response [46]. Conventional
MAPKs include the extracellular signal-regulated kinases 1
and 2 (Erk1/2), the c-Jun N-terminal kinases 1–3 (JNK1–
3)/stress activated protein kinases (SAPK), the p38 iso-
forms (p38𝛼, 𝛽, 𝛾, and 𝛿), and the Erk5. These MAPKs
can be activated by growth factors and mitogens, as well
as various stresses. These stimuli activate MAPKK kinases
(MAPKKKs) via receptor dependent and independentmech-
anisms, followed by phosphorylation and activation of a
downstream MAPK kinase (MAPKK) and then MAPKs.
Activated MAPKs phosphorylate and activate specific target
protein kinases, such as RSK, MSK, or MNK to mediate
biological processes [47]. The increased ROS can activate
ERKs, JNKs, or p38 MAPKs [48, 49]. The exact mechanism
by which the ROS activate these kinases is unclear, but a plau-
sible mechanism may be relative to oxidative modifications
and resultant activation of the signaling effector proteins and
inactivation and/or degradation of MAPK phosphatases (see
[50] for more details). Nevertheless, the p38 and JNK signal-
ing activated by ROS is involved in the disease progression of
UC [51–54]. In UC tissues, p38 MAPK signaling changes are

a molecular signature of UC and proportional to the degree
of inflammation [55, 56].

2.3. Carbonyl Stress and a Vicious Cell Damage Cycle. A class
of carbonyl compounds is called 𝛼,𝛽-unsaturated carbonyls,
also referred to as electrophilic carbonyls. These include
acrolein, glyoxal, methylglyoxal, crotonaldehyde, malondi-
aldehyde, and 4-hydroxynonenal (Table 2). As byproducts,
these electrophilic carbonyl compounds are constantly pro-
duced during the metabolism of lipids, carbohydrates, amino
acids, biogenic amines, vitamins, and steroids, as well as
some antitumor agents, such as cyclophosphamide [57–63].
Besides endogenous production, daily food consumption
may represent the most dangerous exposure of human
gastrointestinal (GI) tract to exogenous electrophilic car-
bonyls which are pervasively present in various beverages
and foodstuffs [64–66]. For instance, humans are exposed
to crotonaldehyde through the consumption of vegetables
(1.4–100 𝜇g/kg), fruits (5.4–78𝜇g/kg), fish (71.4–1000𝜇g/kg),
meat (10–270 𝜇g/kg), and alcoholic beverages, such as wine
(300–700𝜇g/L) andwhisky (30–210 𝜇g/L) [66]. Furthermore,
methylglyoxal is a constituent of coffee [67, 68], and acetalde-
hyde is a carcinogenic metabolite of alcohol consumed [69,
70]. Therefore, human GI tract is repeatedly exposed to
carbonyl threats, which are important factors of GI inflam-
matory and neoplastic lesions (Table 3).

In organisms, there are three main pathways responsible
for elimination of intracellular carbonyls, through which
carbonyls are oxidized to carbonic acids, conjugatedwith glu-
tathione, or reduced to less toxic alcohols. Aldehyde dehydro-
genases mediate the oxidative pathway of carbonyls, forming
carbonic acids [71, 72]; glutathione-S-transferases (GST)
catalyze the conjugation of carbonyls with glutathione [73–
75]; and aldehyde reductase and aldo-keto reductases (AKRs)
are responsible for the reduction of carbonyls to alcohols
with NAD(P)H as a coenzyme [75–77]. AKR1B10 is the sole
carbonyl-detoxifying enzyme with intestine-specific expres-
sion identified thus far [78] and plays a critical role in the
inflammatory lesions andmalignant progression of the colon
[19]. Therefore, in normal conditions human consumption
or endogenous production of the cytotoxic carbonyls may
be subcytotoxic. However, in oxidative stress, excessive ROS
oxidize unsaturated fatty acids and produce a large amount
of highly reactive 𝛼,𝛽-unsaturated carbonyl compounds, that
is, lipid peroxides. For instance, 4-hydroxynonenal (HNE) is
at 0.1 to 3.0 𝜇M in normal tissues but increases to ∼10 𝜇M in
the condition of oxidative stress [79]. Carbonyl accumulation
due to overproduction and/or impaired clearance, such as
AKR1B10 deficiency [19], would lead to carbonyl stress.

Due to their high reactivity, 𝛼,𝛽-unsaturated lipid per-
oxides are highly cytotoxic and genotoxic. They can interact
with free amino groups of proteins (e.g., lysine residue),
peptides, and amino acids, with sulfhydryl groups of amino
acid residues (e.g., cysteine residue), and with histidine
and other residues, forming covalently modified adducts
[57, 80–86]. The covalent modifications could lead to pro-
tein dysfunction, resistance to proteolysis, or depolymer-
ization. Protein adducts can also act as special second
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Figure 2: NF-𝜅B signaling pathway, inflammation, and carcinogenesis induced ROS. Excessive reactive oxygen species (ROS) derived from
mitochondrial membrane, xenobiotics, and enzyme reactions activate IKK. Activated IKK phosphorylates I𝜅B and leads to ubiquitination
and proteasome degradation of I𝜅B, releasing NF-𝜅B proteins, such as p50 and p65. The free p50 and p65 translocate into nuclei and drive
target gene expression, such as inflammatory cytokines, leading to inflammatory lesions and carcinogenesis.

Table 2: Carbonyl compounds and clearance.

Carbonyl compounds Carbonyl clearance
Acrolein (CH

2
=CHCHO)

Glyoxal (OHCCHO)
Methylglyoxal (CH

3
COCHO)

Crotonaldehyde (CH
3
CH=CHCHO)

Malondialdehyde (OCHCH
2
CHO)

4-Hydroxynonenal
(OCHCH=CHCH(-OH)(CH

2
)
4
CH
3
)

(1) Glutathione-S-transferases (GST) catalyze carbonyl-glutathione conjugation
(2) Aldehyde reductase and aldo-keto reductases (AKRs) catalyze reduction to alcoholic forms
(3) Aldehyde dehydrogenases catalyze oxidation to carbonic acids

messengers or autoantigens, promoting macrophage accu-
mulation, retention, and activation, thus increasing ROS gen-
eration. Furthermore, carbonyl-induced protein dysfunction
may impair mitochondrial respiratory chain reactions and
membrane potential, leading to increased ROS production
and release into cytosol. Therefore, in inflammatory condi-
tions (i.e., UC), the carbonyl lesions may create a vicious
loop with oxidative stress, aggravating cell and tissue damage
[19, 87].

3. Oxidative Stress and Carbonyl Lesions in
Colitis-Associated Colorectal Cancer

Colorectal cancer (CRC) is the third most common cancer
worldwide with mortality ranked within top four [88, 89].

According to International Agency for Research on
Cancer of WHO (http://globocan.iarc.fr/Pages/fact sheets
cancer.aspx), about 1.36 million of new CRC cases were
diagnosed globally in 2012, accounting for approximately
69,000 deaths. Clinically, there are two main types of CRC,
that is, sporadic colorectal cancer (SCC) and hereditary
colorectal cancer (HCC). The latter includes familial
adenomatous polyposis (FAP) and hereditary nonpolyposis
colorectal cancer (HNPCC). Colorectal adenoma, colorectal
nonadenomatous polyposis, and inflammatory bowel disease
are precancerous lesions associated with CRC. The UC
patients have an increased risk of developing colorectal
cancer, so-called colitis-associated colorectal cancer (CAC)
[90], and the cancer risk increases exponentially with the
duration of disease [91–93]. A UC patient with 10 years of

http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
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Table 3: Carcinogenic role of carbonyl compounds.

Diseases/genotoxicity Species Carbonyl association References
Colitis-associated colorectal
neoplasms Mice Coupled with high carbonyl levels, for

example, malondialdehyde [19, 153]

Stomach hyperplasia, squamous
papilloma, and carcinoma Rats 2,4-Hexadienal exposure [73]

Precancerous gastritis and gastric
cancer Humans High serum malondialdehyde levels [154, 155]

Colorectal cancer Humans High serum lipid peroxide levels [156]
Colon and gastric cancers Humans Acetaldehyde from alcohol [69, 70]
Colorectal adenocarcinoma Humans High protein carbonyl levels [157]
Precancerous colorectal adenopolyps Humans High protein carbonyl levels [158]
Colorectal cancer Humans High lipid peroxide levels in tissues [159–161]

Genotoxicity Humans High carbonyl DNA adduct levels in
tissues [58, 162, 163]

Genotoxicity Cell lines/in vitro studies Production of carbonyl DNA adducts [164–167]

disease duration has 10-fold higher CRC risk than the general
population.

Etiopathogenesis of CAC is complex. In UC, intesti-
nal epithelial and immune cells produce and secrete a
variety of mitogenic cytokines that stimulate cell growth
and proliferation. Massive ROS and inflammatory cytokines
produced in UC tissues activate multiple signal pathways,
such as NF-𝜅B, STAT3, p38 MAPK, and Wnt/𝛽-catenin
pathways, which mediate cell proliferation, differentiation,
and apoptosis/survival [94]. Finally, DNA damage induced
by oxidative and carbonyl stresses plays an essential role in
the carcinogenic transformation of the disease. Therefore,
malignant progression ofUC toCAC is a complicated process
and oxidative and carbonyl stresses are key factors in this
process.

3.1. Sporadic Colorectal Cancer and Colitis-Associated Col-
orectal Cancer. CRC is a multistaged, complicated disease
associated with multiple oncogene and tumor suppressor
gene mutations, such as p53, K-ras, and adenomatous poly-
posis coli (APC) mutations [95]. In pathogenesis, spo-
radic CRC often demonstrates an “adenoma-carcinoma”
progression, but the CAC experiences a unique sequence
of “inflammation-dysplasia-carcinoma” [96]. Patients with
UC may experience a long course of dysplasia. Three types
of atypical hyperplasia may appear in the carcinogenic
process of UC: (1) normal mucosa or mucous membrane
with regeneration, also named dysplasia negative type, (2)
dysplasia uncertain type, (3) dysplasia positive type. UC
patients with high or moderate grade dysplasia are at high
risk of developing CAC [97].

CAC also demonstrates a different time line and involve-
ment of gene mutations. In sharp contrast to sporadic CRC,
p53 mutation occurs early and is an important step in the
progression of CAC. The p53 mutations are often detected
in mucosa that is even nondysplastic [98, 99], but APC
mutations are present at the late stage of CAC [100–103]. K-
rasmutation plays a rare role in CAC development [104], but

DNAmethylation is an early event in UC [105], although less
common than in sporadic CRC [106, 107].

3.2. Inflammatory Cytokines and CAC Progression. Inflam-
matory cytokines produced by intestinal epithelial cells
and infiltrated inflammatory cells in UC include IL-1, IL-
6, TNF-𝛼, and TGF-𝛽. These cytokines activate mitogenic
signaling pathways, stimulate cell proliferation and survival,
and thus promote inflammation-associated tumorigenesis.
For instance, the plasma level of IL-6 is significantly ele-
vated in patients with IBD, and the increased IL-6 activates
STAT3/JAKl signaling, promoting cell proliferation, evolu-
tion, and tumorigenic progression [94]; inhibition of JAKl
signaling or IL-6 deficiency by targeted disruption diminishes
CRC incidence and progression [108, 109].

Tumor necrosis factors (TNF) are proinflammatory
cytokines which are produced and secreted mainly by
monocyte-macrophages. In this family, TNF-𝛼 is an impor-
tant member that functions in inflammation, immune
response, and tumorigenesis. Animal experiments have
demonstrated that TNF-𝛼 can increase the plasma level of
IL-6 [110] and initiate colorectal carcinogenesis mediated
by chronic inflammation [111]. To date, TNF-𝛼 monoclonal
antibody is used for IBD treatment and has demonstrated
promising results; this antibody may also be effective in
prevention of CAC [112].

TGF-𝛽 and family members are secretory signal trans-
duction peptides that regulate cell proliferation and apop-
tosis. In the normal cells, the major function of TGF-𝛽 is
to arrest cell division in the early stage of DNA synthesis,
induce cell differentiation, or promote apoptosis. Literature
reports indicate that mutations in TGF-𝛽 signal transduction
pathway occur in patients with UC before the formation of
colorectal cancer [113]. For example, TGF-𝛽RII mutations
have been detected in UC dysplasia and are associated with
CAC progression [114].

Finally, inflammatory cytokine IL-1𝛼 increases in UC and
may be involved in CAC development [115], but compared
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to other cytokines, the role of IL-1𝛼 in the development and
progression of CAC is more complicated. IL-1𝛼may promote
cancer progression by stimulating angiogenesis [116]; IL-1𝛼
may also promote epithelial repair and prevent CAC by
inducing the expression of cyclooxygenase 2 (COX-2), a key
enzyme of prostaglandin E

2
(PGE
2
) synthesis from arachi-

donic acid (AA) [117]. PGE
2
is a prominent prostaglandin in

the intestine; through binding to E prostanoid (EP) receptor,
PGE
2
mediates intestinal epithelial cell proliferation and

apoptosis [118, 119]. This is considered favorable to injury
repair and remission of UC. In fact, ulcerogenic response
of nonsteroidal anti-inflammatory drugs (NSAIDs) in the
intestine is ascribed to inhibition of cyclooxygenases and
resultant PGE

2
deficiency [120]. In dextran sodium sulfate-

(DSS-) induced colitis, COX-2/PGE
2
promotes epithelial

cell proliferation; inhibition of COX-2 decreases epithelial
proliferation, exacerbates colitis, and prolongs injury phase,
thus promoting intestinal injury and dysplasia [121–123].
Therefore, evaluation of IL-1𝛼 in CAC development and
progression needs to be more cautious.

3.3. Oxidative DNA Damage in CAC Progression. DNA
mutations and resultant protooncogene activation and/or
tumor suppressor gene inactivation are a hallmark of cell
carcinogenesis, which reprograms cell growth, division, and
gene transcription. The high risk of UC patients to develop
colorectal cancer is essentially attributed to the increased
DNA damage induced by inflammatory oxidative stress and
carbonyl lesions. DNA is a ready target of active oxygen free
radicals, leading to oxidative DNA damage.Through abstrac-
tions and addition reactions, highly reactive hydroxyl radicals
react with the heterocyclic DNA bases and sugar moiety, pro-
ducing carbon-centered sugar radicals and OH- or H-adduct
radicals of heterocyclic bases [124]. Further reactions of these
radicals yield numerous effects, such as 8,5-cyclopurine-2-
deoxynucleosides, tandem lesions, clustered sites, and DNA-
protein cross-links [124, 125]. Among types of oxidative DNA
damage induced by ROS, 8-hydroxy-2-deoxyguanosine (8-
OHdG) or 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG)
is a predominant form and a valuable biomarker widely used
for endogenous oxidative damage to DNA (Figure 1). For
instance, the urinary 8-OHdG is used as a biomarker for
risk assessment of cancers and degenerative diseases [126,
127].

GC to TA transversion is a major type of DNAmutations
resulting from 8-OHdG adducts [128]; two common target
genes of the 8-OHdG damage are Ras and p53, leading to
activation of the protooncogene Ras and inactivation of p53
tumor suppressor, driving tumorigenesis [129, 130]. ROS also
cause DNA methylation, single- and double-strand breaks,
and shortening of telomeres. DNA methylation is an early
event in the progression ofUC toCAC [105], but less common
than in sporadic CRC [106, 107]. Oppositely, DNA breaks and
telomere shortening occur more often in the UC-associated
tumorigenesis [131, 132]. The telomere shortening induced by
ROS could induce chromosome instability, leading to chro-
mosomal loss, heteroploid, amplification, and translocation,
driving tumorigenesis [133, 134].

Apoptosis

Carbonyls
(MAD, 4-HNE)

DNA damage

p53- (Ser15)P

ATM/ATR Chk1/Chk2

Lipid peroxidation

p53-

p53

(Ser20)P

Fas-R, Bax, 
Puma, and Noxa p53R2

Cell cycle arrest
DNA damage repair

ROS

p21Waf1/CIP1

Figure 3: DNA damage induced by oxidative and carbonyl stresses
and p53-dependent DNA damage response (DDR). Reactive oxygen
species (ROS) and 𝛼,𝛽-unsaturated carbonyl compounds produced
by lipid peroxidation, such as MDA and HNE, trigger DNA
damage, such as double-strand DNA breaks. ATM/ATR senses
the breaks and activates p53 by phosphorylating Ser15; ATM/ATR
also phosphorylates Ser345 of Chk1/Chk2 and activates Chk1/Chk2,
which further activates p53 by phosphorylating Ser20. In cells with
mild DNA damage, p53 drives expression of p21Waf1/CIP1 and p53R2,
leading to cell cycle arrest and DNA damage repair. In cells with
severe DNA damage, p53 drives Fas-R, Bax, Puma, Noxa, Apaf-
1, and Pidd expression, activating intrinsic and extrinsic apoptotic
pathways.

3.4. Carbonyl DNA Damage in CAC Progression. Carbonyl
stress derived from lipid peroxidation is also an important
DNA damage factor in UC. Electrophilic carbonyls can
readily react with DNA forming covalently modified DNA
adducts (Figure 1). The DNA adducts can block DNA semi-
conservative replication performed by DNA polymerases or
arrest transcription driven by RNA polymerases [58, 135–
137]. DNA adducts can also cause miscoding and induce
DNA breaks [58, 137–139]. For instance, malondialdehyde
(MDA) can react with deoxyguanosine in DNA to form
an exocyclic adduct, pyrimido[1,2-alpha]purin-10(3H)-one
(M1G), which is mutagenic by resulting in frameshift muta-
tions and base pair substitutions [140]. The 4-HNE-dG
polymer derived from 4-hydroxynonenal can lead to GC
to TA transversion at codon 249 of p53 gene, driving UC
progression to CAC [141, 142].

Of note, DNA breaks induced by carbonyl compounds
may activate cellularDNAdamage response (DDR), inducing
cell cycle arrest for DNA repair or apoptosis (Figure 3). In
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(ii) Protein damage
(i) Lipid peroxidation
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(iii) Wnt/𝛽-catenin
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Figure 4: Hypothetic model of oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Infection and
immune response act as primary initiators to trigger inflammation and inflammatory cell infiltration. In this process, intestinal mucosal crypt
abscesses occur and vast reactive oxygen species (ROS) are produced, thus leading to oxidative stress. Excessive ROS exaggerate inflammatory
lesions and stimulate epithelial cell proliferation through oxidative insults to proteins, lipids, and DNA and also by activation of cell signaling
pathways, eventually leading to ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). Electrophilic carbonyl compounds play
as important secondary factors of oxidative stress to cause cellular and macromolecular lesions, which, together with oxidative stress, may
form a vicious cycle. Meanwhile, proinflammatory cytokines produced by epithelial cells and infiltrated inflammatory cells may promote the
progression of UC and CAC.

this DDR process, ATM/ATR functions as a sensor of DNA
breaks, and p53 acts as a key mediator [143, 144]. Sensing the
DNA double-strand breaks, ATM/ATR is activated by phos-
phorylation, which reaches the peak within 30 minutes [145].
The activated ATM/ATR phosphorylates p53 at Ser15 and/or
Chk1/Chk2 at Ser345, and Chk1/Chk2 further phosphorylate
p53 at Ser20 [146]. Activated p53 triggers cell cycle arrest
for DNA damage repair or apoptosis to eliminate cells with
severe DNA damage through selective activation of target
gene expression, such as apoptotic genes Fas-R, Bax, Puma,
and Noxa or cell cycle monitoring and DNA repair genes
p21Waf1/CIP1 and p53R2 [147]. Therefore, DDR is considered
a barrier of carcinogenesis, and mutations of genes in this
pathway are carcinogenic. In fact, p53 mutation is an early
event in CAC and occurs even in noncancerous UC tissues
[148, 149].

4. Conclusion and Perspective

Early in 1863, a German pathologist Virchow proposed that
tumor might be derived from chronic inflammation tissues;
in 2009, Hanahan and Weinberg proposed tumor-related
inflammation as the seventh hallmark of cancer. To date,
the role of chronic inflammation in cancer development

and progression has become an important research focus in
tumormicroenvironment. In UC, the pathogenesis of CAC is
a classical path of nonresolving inflammatory progression to
cancer, featured with a unique sequence of “inflammation-
dysplasia-carcinoma.” Oxidative stress and secondary car-
bonyl lesions are key factors in the development and pro-
gression of UC and CAC; the ROS take an important part
in multiple stages of initiation, promotion, and progression
of UC and CAC and the secondary carbonyl lesions play
an exaggerating role both in oxidative stress itself and in
progression of UC and CAC (Figure 4).

To date, antioxidant prevention and treatment have been
investigated in experimental animals of colitis and in clinical
patients of UC. In animals, antioxidantG. biloba extract (EGb
761) showed effectiveness in prevention and treatment of
DSS-induced colitis in mice [150], and the Zingiber officinale
extract demonstrated efficacy in modulating extent and
severity of colitis in rats [151]. In humans, consumptions
of antioxidant food, such as blueberries, cherries, toma-
toes, squashes, and bell peppers have been suggested as
supplementary treatment of active UC and prevention of
reactivation. More impressively, a clinical trial of rectal d-
alpha tocopherol, a powerful vitamin E antioxidant, has
shown that “all 14 patients responded clinically to the therapy
and remission was induced in 9 of them (64%)”; no adverse
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events were reported and no patients were hospitalized
for “worsened disease activity” [152]. These preclinical and
clinical approaches suggest that antioxidant treatment may
be a novel mode of UC management and prevention of
malignant progression. Further studies are warranted.
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